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The variational cluster approach �VCA� is applied to the one-dimensional Hubbard model at zero tempera-
ture using clusters �chains� of up to ten sites with full diagonalization and the Lanczos method as cluster solver.
Within the framework of the self-energy-functional theory �SFT�, different cluster reference systems with and
without bath degrees of freedom, in different topologies and with different sets of variational parameters, are
considered. Static and one-particle dynamical quantities are calculated for half-filling as a function of U as well
as for fixed U as a function of the chemical potential to study the interaction- and filling-dependent metal-
insulator �Mott� transition. The recently developed Q-matrix technique is used to compute the SFT grand
potential. For benchmarking purposes we compare the VCA results with exact results available from the Bethe
ansatz, with essentially exact dynamical density-matrix renormalization-group data, with �cellular� dynamical
mean-field theory and full diagonalization of isolated Hubbard chains. Several issues are discussed including
convergence of the results with cluster size, the ability of cluster approaches to access the critical regime of the
Mott transition, efficiency in the optimization of correlated-site vs bath-site parameters, and of multidimen-
sional parameter optimization. We also study the role of bath sites for the description of excitation properties
and as charge reservoirs for the description of filling dependencies. The VCA turns out to be a computationally
cheap method which is competitive with established cluster approaches.
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I. INTRODUCTION

One of the most fascinating effects of strong interactions
among itinerant electrons is insulating behavior that is in-
duced by electron correlations.1,2 An understanding of the
Mott-insulating state and also of the transition from a corre-
lated metal to a Mott insulator is important for many
transition-metal oxides including the parent compounds of
cuprate-based high-temperature superconductors.3 The Mott
transition is generically described using lattice models with
purely local interactions, such as the single-band Hubbard
model.4–6 Correlations, however, are generally nonlocal or
even long ranged. It is a highly nontrivial question to what
extent the Mott transition is dominated by local correlations
and whether or not local approximations, i.e., approxima-
tions neglecting nonlocal correlations, are able to capture the
essence of the Mott physics.

The implications of the dynamical mean-field theory,7–9 as
a distinguished local approximation, have been worked out
in detail in the past and have been compared with numerous
experiments on transition-metal oxides. The dynamical
mean-field theory �DMFT� is a mean-field approach in the
sense that the effects of nonlocal spin or charge two-particle
correlations on the one-particle excitation spectrum are ne-
glected. In case of layered, essentially two-dimensional com-
pounds, for example, this is probably a too strong approxi-
mation.

Different generalizations of DMFT have been suggested
in the past to overcome this limitation.10–13 Cluster
extensions,10 which restore the effects of nonlocal correla-
tions step by step with increasing cluster size, are conceptu-
ally simple and interesting approaches in this respect. The
idea is that, besides the local �temporal� correlations, it is the

effect of the short-range correlations, treated exactly in a
cluster approach, which dominates the physics of the Mott
transition or at least the physics of the Mott-insulating state.
As the importance of nonlocal correlations is expected to
increase with decreasing lattice dimension, the most strin-
gent test for a cluster approach consists in its application to
the one-dimensional lattice. Ideally, starting from a �dynami-
cal� mean-field picture of the transition, the decisive step
forward should be done with the smallest clusters already,
while a further increase of the cluster size should add quali-
tatively unimportant corrections only. Since exact results
from the Bethe ansatz are available for the Hubbard model in
one dimension,14 this model can very well be used to test this
idea and to benchmark different cluster approximations.

Apart from true extensions of DMFT,15–18 where a small
cluster with Lc correlated sites and a continuum �ns=�� of
uncorrelated �“bath”� sites is considered, there are also dy-
namical cluster approaches without any bath degrees of free-
dom �i.e., ns=1�, such as the cluster-perturbation theory
�CPT�19,20 and the variational cluster approach �VCA�.21 The
self-energy-functional theory �SFT�21,22 provides a unified
framework for all these different cluster approximations
which are characterized by different Lc and ns. Therefore, the
purpose of this paper is to apply �within the SFT� different
cluster approaches to the one-dimensional Hubbard model
and to study the interaction- and the filling-controlled transi-
tion for benchmarking purposes.

An obvious question concerns the rate of convergence to
the exact solution which is approached in the Lc=� limit.
Depending on the cluster scheme used and on the quantity of
interest, an exponential or power-law dependence on Lc can
be inferred.23–26 These considerations, however, apply to the
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large-Lc limit only while for practical purposes the quality of
a given approximation for small Lc is much more important
and can only be estimated a posteriori.

It is also unclear whether or not the inclusion of bath sites
makes a cluster approach more efficient, i.e., speeds up the
convergence to the exact solution �see the discussion in Ref.
21�. Because of the exponential growth of the Hilbert space
with increasing ns, this is of particular importance for meth-
ods that are based on a full �or Lanczos� diagonalization of
the effective cluster model.

A simple and frequently used27 cluster approximation is
the “direct” cluster approximation where quantities for the
infinite system are approximated by those of a finite cluster
without any embedding of the cluster into a medium that
mimics the disregarded cluster environment. Due to particle-
number conservation and due to the finite �and usually small�
cluster size Lc, it is inconvenient to study filling dependen-
cies using the direct cluster approach. The filling-controlled
Mott transition, in particular, is hardly accessible in this way.
Another interesting question is therefore, if and how a con-
tinuous filling dependence can be achieved by embedded,
self-consistent or variational cluster approaches.

In Sec. II, we briefly list some well-known properties of
the Hubbard model in one dimension which are relevant for
our study. Section III provides a brief discussion of cluster
approaches employing the exact diagonalization method at
zero temperature. Some details of the SFT and of our nu-
merical approach are given in Sec. IV. The numerical results
for the Mott insulator at half-filling and for the filling-
controlled Mott transition are presented and discussed in
Secs. V and VI, respectively. Section VII summarizes our
main results.

II. MOTT TRANSITION IN THE ONE-DIMENSIONAL
HUBBARD MODEL

In one dimension, the single-band �grand-canonical� Hub-
bard model is given by

H = − t�
i�

�ci�
† ci−1� + H.c.� − ��

i�

ni� + U�
i�

ni↑ni↓. �1�

Here, ci� annihilates an electron at the site i with spin pro-
jection �= ↑ ,↓. Furthermore, ni�=ci�

† ci� is the occupation-
number operator, the ground-state average of which is the
site- and spin-independent filling n= �ni��. We consider
nearest-neighbor hopping only and set t=1 to fix the energy
scale. Finally, U denotes the strength of the local Coulomb
repulsion, and � is the chemical potential.

The ground-state energy E0 �of H+�N� can be calculated
exactly14 by means of the Bethe ansatz. For �=U /2 the
model is particle-hole symmetric and half-filled �n=1�. If L
denotes the number of sites, we have

E0/L = − 4t�
0

�

dx
J0�x�J1�x�

x�1 + exp�xU/2t��
, �2�

where J0 and J1 are Bessel functions. While the system is
metallic for U=0, a Mott-insulating state is found for any
U�0 as can be seen from the exact expression28 for the
single-particle gap:

� =
16t2

U
�

1

�

dx
	x2 − 1

sinh�2�tx/U�
. �3�

The gap is finite for U�0 but exponentially small in the
limit U→0, i.e., �
exp�−1 /U�. Opposed to the dynamical
mean-field scenario, there is no finite critical U for the Mott
transition.

The filling-controlled Mott transition can be characterized
by the charge susceptibility �“compressibility”�

	 =
�n

��
. �4�

At U=0 the compressibility is proportional to the tight-
binding density of states at the Fermi energy and is therefore
finite for all fillings, except for n=0 and n=2 because of the
Van Hove singularities at the lower and upper band edges.
For any finite U, the compressibility must vanish in the Mott-
insulating phase as for n=1 the one-particle excitation spec-
trum is gapped. Approaching the Mott insulator from the
metallic side �n→1�, however, the compressibility behaves
discontinuously and even diverges. For n
1 but close to
half-filling, it is given by29

	 = ��−1, �5�

where �=1−n is the hole concentration and ��0 a
U-dependent constant. This implies that close to half-filling
�, as a function of the chemical potential, approaches �=0
with an infinite slope:

� 
 	��0� − ���� . �6�

Here, we note that the Mott physics in dimension D=1
stands in marked contrast to the DMFT �or D=�� scenario.8

DMFT predicts a Mott-insulating state with a vanishing 	
only for interaction strengths U larger than a finite critical
value Uc. Furthermore, for U�Uc the compressibility is
found to stay finite, 0
	
�, when approaching the Mott
insulator from the metallic state off half-filling as n→1.

III. CLUSTER APPROACHES USING THE LANCZOS
TECHNIQUE

It is obviously interesting whether or not this qualitative
difference in the physics of the Mott transition can be cap-
tured by means of a cluster extension of the DMFT. This
question has been tackled recently with the help of cellular
DMFT �and with the periodized C-DMFT� for half-filling by
Bolech et al.30 and for the filling-dependent transition by
Capone et al.31 For studies at zero temperature the Lanczos
technique32 is a powerful method to treat the effective cluster
problem within C-DMFT and was also employed in Refs. 30
and 31. The effective cluster Hamiltonian is given by

H� = − t�
i=2

Lc

�
�

�ci�
† ci−1� + H.c.� − ��

i=1

Lc

�
�

ni� + U�
i=1

Lc

ni↑ni↓

+ �
i,�

�
�i=2

ns�i�

��i�i
ai�i�

† ai�i�
+ �Vi�i

ci�
† ai�i�

+ H.c.�� . �7�

Here ns�i�−1 is the number of uncorrelated sites per corre-
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lated site i. ns�i� may vary along the chain. Due to the expo-
nential growth of the Hilbert space dimension with the sys-
tem size, calculations are basically limited to a total number
of �i=1

Lc ns�i�
10 sites only, if Lc denotes the number of cor-
related sites �the cluster “size”�. Note that the reference sys-
tem has to be solved repeatedly to find a stationary point or
to achieve self-consistency, respectively, and that due to open
boundary conditions a few general symmetries can be ex-
ploited only. For a small cluster with Lc=4, for example, this
implies a limitation to less than ns=3 local degrees of free-
dom, i.e., less than two bath sites per correlated site, if
ns�i�=ns is taken to be constant as usual. While a true solu-
tion of the C-DMFT self-consistency equation actually re-
quires a continuum of bath sites �at each correlated site�, i.e.,
ns=�, the convergence with respect to ns is expected33 to be
exponentially fast. This makes calculations with small ns fea-
sible.

However, there are two conceptual drawbacks of the
exact-diagonalization �Lanczos� approach to C-DMFT: �i�
Clearly, the determination of the bath parameters �i� and Vi�
is of crucial importance for small ns �and small Lc�. One
possible prescription is to fix the parameters by minimization
of a suitably defined distance between the hybridization
function of Eq. �7� and the one given by the self-consistency
equation. The choice of the quantity that is “projected” as
well as the distance measure, however, are more or less ad
hoc and by no means unique. �ii� Within the C-DMFT the
one-particle energies of and the hopping between the corre-
lated sites are fixed by their values in the original Hubbard
model. This may be seen as a limited flexibility for the de-
termination of the �in a certain sense� optimal effective clus-
ter model.

The VCA21 or, more generally, the self-energy-functional
theory22 does not suffer from these shortcomings: �i� The
bath parameters of the effective cluster model �the “reference
system”� are fixed in a unique way by demanding the grand
potential of the system to be stationary with respect to those
variations of the self-energy that are induced by varying the
bath parameters. This prescription is distinguished by the
fact that it ensures thermodynamical consistency of the
results:34,35 All approximate quantities of the theory derive
from an approximate but explicitly given thermodynamical
potential. Opposed to C-DMFT/ED this consistency is
achieved for any Lc and ns and not only in the continuum
limit ns→�. �ii� There is more flexibility in the choice of the
reference system: Within the SFT it is possible to vary all
one-particle parameters of the reference system including
those referring to the original correlated sites. Furthermore,
one is by no means forced to attach a bath to each of the
correlated sites. A physically motivated choice is to consider
bath sites at the cluster boundaries only, for example.

IV. VARIATIONAL CLUSTER APPROACH USING Q
MATRICES

The SFT is described in Refs. 21, 22, and 34–37. The
main idea is to express the grand potential of the original
model as a functional of the self-energy, �=����, such that
the exact self-energy is given as a stationary point, �� /��

=0. Trial self-energies are taken from a reference system
with the same �Hubbard� interaction but with a modified one-
particle part. If the Hamiltonian of the original system, H
=H0�t�+H1�U�, consists of a free part with parameters t and
an interaction term with parameters U, the most general
Hamiltonian of the reference system has the form H�
=H0�t��+H1�U� with arbitrary t�. Figure 1 shows the original
one-dimensional Hubbard model with nearest-neighbor hop-
ping t as well as various reference systems considered for
our calculations. The trial self-energy is parametrized by the
set of one-particle parameters of the reference system: �
=��t��, and variations of the trial self-energy are considered
that are due to variations of t�, i.e., one has to solve

�����t���
�t�

=
!

0. �8�

The decisive point is that ����t��� can be evaluated exactly
for reference systems that allow for a �numerically� exact
computation of the single-particle Green’s function. In case
of a finite �small� cluster or chain and a finite �small� number
of bath sites, this can be achieved by full diagonalization or
with the help of the Lanczos method.32

All what is needed in a practical calculation is the one-
particle Green’s function of the reference system. If Lc�1,
i.e., in case of the variational cluster approximation �VCA�,
this is the Green’s function of a set of decoupled clusters.
The Green’s function for a single cluster,

G��� ��� = �
m

Q�m
1

� − �m�
Qm�

† , �9�

is given in terms of poles �m� and corresponding weights
Q�mQm�

† . The poles and the Q matrices34 can be read off
from the standard Lehmann representation.38 Note that Q is a
nonquadratic matrix: �= �i ,�� refers to a one-particle orbital
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FIG. 1. �Color online� The original system �D=1 Hubbard
model, nearest-neighbor �NN� hopping� and different reference sys-
tems considered in this study together with the corresponding varia-
tional parameters being optimized. See text for discussion.
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of the cluster while m= �r ,s� refers to a single-particle exci-
tation between two eigenstates �s� and �r� of the cluster
Hamiltonian H� with excitation energy �m� =Er�−Es�. We have
QQ†=1�Q†Q.

For T=0 the SFT grand potential is then given by

����t��� = �� + �
m

�m��− �m� − �
m

�m� ��− �m� � . �10�

Here �� is the grand potential of the reference system, ����
is the Heaviside step function, and �m are the poles of the
�VCA approximation for the� one-particle Green’s function
of the original system. They can easily be obtained34 as the
eigenvalues of the matrix

M = � + Q†VQ , �11�

with �mn=�m� �mn and V= t− t�. Typically, V includes the in-
tercluster hopping, shifts of one-particle energies, and, in the
case of bath sites, further hybridization terms.

If a reference system with bath sites is considered, it is
convenient to formally include these bath sites also in the
original system where they are, however, completely decou-
pled from the correlated sites such that physical quantities
remain unchanged. This has the advantage that t and t� have
the same matrix dimension, and also the Hamiltonians of the
original and of the reference system, H and H�, operate on
the same Hilbert space.

The dimension of M is given by the number of poles of
G� with nonvanishing spectral weight. If this number is not
too large, the Q-matrix technique is a very simple means for
the evaluation of the self-energy functional. As there is no
frequency integration involved, neither on the real axis
where an additional broadening parameter must be used, nor
on the imaginary axis where a high-frequency cutoff must be
introduced and the remaining tail must be controlled, the
method is also very accurate.

For larger clusters not accessible to full diagonalization,
we employ the band Lanczos method to compute � and Q.39

This variant of the Lanczos algorithm ensures that different
elements G��� ��� have the same set of poles, i.e., the same
�m� independent of � and �. The dimension of the matrix M
is then given by the number of iteration steps in the Lanczos
procedure. As the results usually converge very fast, it is
sufficient to consider about 100 steps only. This is regularly
checked in our calculations. For small clusters the results
have been compared with those obtained by full diagonaliza-
tion and found to agree within numerical accuracy.

For a given reference system one should in principle vary
all one-particle parameters t� to get the optimal result. It is
much more convenient, however, to restrict oneself to a
small number of physically motivated parameters to be opti-
mized. This avoids complications arising from a search for a
stationary point in a high-dimensional parameter space. In
most cases, as will also be demonstrated below, it is fully
sufficient to consider a few variational parameters only
which are suggested by the geometry of the reference system
in an obvious way. The reference systems considered here as
well as the corresponding variational parameters taken into
account are shown in Fig. 1.

The system of interest is the D=1 Hubbard model. How-
ever, for practical purposes it is more convenient to consider
a Hubbard chain consisting of a finite number of sites L with
periodic boundary conditions as our original system. For the
actual calculations we used L=1000–2000 sites. This is fully
sufficient to ensure that all results shown below are indepen-
dent of L.

Stationary points are determined using different numerical
strategies:40 One-dimensional parameter optimization is per-
formed by iterative bracketing of maxima and minima. For
more than one variational parameter, the SFT grand potential
is usually not extremal but has a saddle point. Given a cer-
tain characteristic of the saddle point, this can be found by
iterated one-dimensional optimizations—a strategy that has
been found to be useful for two or three parameters. In case
of higher-dimensional parameter spaces, the downhill sim-
plex method is applied to find local minima of
������t��� /�t��2 from which �if there is more than one� only
those are retained for which ����t��� has a vanishing gradi-
ent. For most situations37 the minimal grand potential distin-
guishes the thermodynamically stable phase if there is more
than a single stationary point. In all examples discussed be-
low, however, this has not been an issue or turned out to be
straightforward.

V. MOTT-INSULATING PHASE FOR HALF-FILLING

One of the advantages of the variational cluster approxi-
mation �and of the SFT in general� consists in its flexibility
to construct approximations of different quality and com-
plexity. The most simple case is given by a reference system
consisting of decoupled clusters �chains� with Lc correlated
sites each where only the intracluster nearest-neighbor hop-
ping t� is considered as a variational parameter, see Fig. 1, A.
The hopping is assumed to be the same for all pairs of near-
est neighbors. This implies that the parameter space is one
dimensional, and an extremum of ��t�������t��� defines
the physical self-energy within this approximation. Clusters
with an even number of sites Lc are preferred to avoid a
Kramers-degenerate ground state �for half-filling� and odd-
even effects when comparing results for different Lc with
each other.

Another variational parameter suggesting itself is the on-
site energy. A homogeneous shift of all intracluster on-site
energies acts like a separate cluster chemical potential. As
has been discussed in Ref. 34, this is actually one of the most
important parameters as its optimization guarantees thermo-
dynamical consistency with respect to the particle number.
Here, we start our discussion with the Mott-insulating phase
at half-filling ��=U /2�. In this case, the optimal value of the
cluster on-site energies is already predicted by particle-hole
symmetry and is given by the on-site energy of the sites in
the original model �which is set to zero�. This can also be
reproduced explicitly within the VCA: It turns out that
����t��� is always at a maximum for vanishing on-site en-
ergies.

We also ignore fictitious symmetry-breaking fields cou-
pling to the local spin or the local charge density. Since those
coupling terms belong to the one-particle part of the Hamil-
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tonian, the corresponding field strengths can in principle be
considered as additional variational parameters.41 A finite
value of the optimized field would indicate long-range spin
or charge order which, however, is absent in one dimension
or, as concerns, e.g., ferromagnetism, is disregarded here. As
discussed in Ref. 41, the absence of antiferromagnetic order
in the D=1 Hubbard model at half-filling is respected by the
VCA for sufficiently large clusters.

A. Variation of hopping parameters

A nontrivial result, namely, t�� t, is found when optimiz-
ing the nearest-neighbor hopping, see Fig. 2. The physical
idea behind this approximation is that switching off the in-
tercluster hopping, which generates the approximate self-
energy, can partially be compensated for by enhancing the
intracluster hopping. This is, in fact, seen in the figure: The
optimal t� is larger than the physical hopping. The trends
found for different cluster sizes Lc and for different U cor-
roborate this interpretation: The larger the cluster, the smaller
is the necessary compensation �see Fig. 2�. Furthermore, it is
reasonable that in case of a stronger interaction and thus
more localized electrons, switching off the intercluster hop-
ping is less significant. The strongest approximation of the
self-energy is therefore generated by the smallest cluster
�Lc=2� and in the limit U→0. This is indicated by a strong
�more than 100%� enhancement of t� compared to t.

On the other hand, even a “strong” approximation for the
self-energy �measured as a strong deviation of t� from t�
becomes irrelevant in the weak-coupling limit because the
self-energy must vanish for U=0. It is therefore not surpris-

ing that the VCA exactly recovers the U=0 limit. The ap-
proximate VCA Green’s function, which can be expressed as
G���= �G0���−1−�����−1 in terms of the optimized self-
energy and the free lattice Green’s function, becomes exact
for U=0. The same holds for the SFT grand potential at the
stationary point � or for the ground-state energy E0=�
+��N�. The latter is shown in Fig. 3 as a function of U in
comparison with the exact �Bethe ansatz� result of Eq. �2�.
Both VCA calculations for the smallest �Lc=2� as well as for
much larger �Lc=10� cluster size correctly reproduce the U
=0 limit while for strong interactions there are deviations. As
expected the Lc=10 calculation provides a much better ap-
proximation.

Figure 4 demonstrates how the U=0 limit is approached.
For strong interaction U=10 the SFT grand potential ��t��
�����t��� is at a minimum for t�
 t. Upon decreasing U,
the optimal t� more and more deviates from the physical t. At
the same time, however, the SFT grand potential ��t�� be-
comes flatter and flatter, and for U→0 the optimal t� is com-
pletely irrelevant as �����0 for any t�.

For finite U the quality of the cluster approximation is
determined by the cluster size Lc. The dependence of the
VCA ground-state energy E0 on Lc turns out to be quite
regular. Plotting the results for fixed U as a function of 1 /Lc
allows us to recover the exact ground-state energy by ex-
trapolation to 1 /Lc=0. This is demonstrated in Fig. 5. It is
worth mentioning that the VCA represents a considerable
improvement as compared to the “direct” cluster approach
where E0 is simply approximated by the ground-state energy
of an isolated Hubbard chain �with open boundary condi-
tions�. Convergence to the exact result is clearly faster within
the VCA. As can be seen by comparing the trends for U=4
and U=8 in Fig. 5, this advantage is more pronounced for
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FIG. 2. �Color online� U dependence of the optimal intracluster
hopping t� for different cluster sizes Lc as indicated. VCA calcula-
tions for �=U /2 �half-filling� using the reference system displayed
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weaker interactions which is explained by the fact that, op-
posed to the VCA, the direct cluster approach is approximate
even for U=0.

CPT19,20 can be understood as being identical with the
VCA provided that the SFT expression for the grand poten-
tial is used and provided that isolated clusters are used as
reference system and no parameter optimization at all is per-
formed. �It should be mentioned that this implies the inabil-
ity of CPT to describe antiferromagnetic order for D=2 and

T=0, for example�. As can be seen from Fig. 4, there is a
gain in binding energy due to the optimization of t�, i.e.,
��t��
��t� for the optimal t�. This means that the VCA
improves on the CPT result. One should note, however, that
on the energy scale used in Fig. 5, for example, this binding-
energy gain would hardly be visible.

The VCA value for E0, though in Fig. 5 always higher
than the exact result, does not represent an upper bound to
the exact ground-state energy a priori.37 To our knowledge
there is no general proof that the self-energy functional is
convex or “variational” despite several recent efforts.42–44

This must be seen as a disadvantage as compared to the
direct cluster method which, via the Ritz variational principle
and in the case of open boundary conditions, is easily shown
to provide strict upper bounds. However, this disadvantage
appears to be inherent to all hitherto known variational prin-
ciples that are not derived from the Ritz principle.

The VCA derives from a dynamical variational principle
based on the one-particle self-energy as the basic variable.
One should therefore expect that the approach is able to pre-
dict one-particle excitations significantly better than the di-
rect cluster method. Here, for the discussion of the Mott
insulator, the focus is on the insulating single-particle exci-
tation gap �, the exact U dependence of which is given by
Eq. �3�. Using the Q-matrix approach, we get the poles of the
one-particle Green’s function with finite spectral weight by
diagonalization of the matrix M in Eq. �11�. The difference
between the lowest pole in the electron-addition part and the
highest pole in the electron-removal part of the spectrum
defines �. As can be seen in Fig. 6, the VCA results for Lc
=2 and Lc=10 considerably improve upon the results of the
direct cluster method. For intermediate and strong couplings,
the VCA gap calculated for Lc=10 is close to the exact re-
sult, and taking into account the Lc=2 calculation in addi-
tion, a finite-size scaling appears to be possible. In the weak-
coupling limit �U�2�, however, an increase of the cluster
size apparently does no longer lead to a significant improve-
ment. Although the VCA gap approaches �=0 for U→0,
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there is a clear overestimation as compared to the exact result
with a relative error that even diverges for U→0.

For a more detailed discussion of the critical point U=0
consider the inset in Fig. 2. One can see that for U→0, the
optimal intracluster hopping quadratically approaches a fi-
nite value: t�= t0�+const�U2+O�U3�. This implies that clus-
ter eigenenergies and thus excitation energies as well as clus-
ter eigenstates and thus spectral weights depend �for Lc
��
analytically on U for U→0. Consequently, the same holds
for the VCA Green’s function since this can be expressed in
terms of the cluster Green’s function G� as G���
= �G����−1− �t− t���−1 and since the matrix inversion involves
finite blocks only due to the remaining superlattice transla-
tional symmetry of the reference system. One-particle corre-
lation functions, the ground-state energy, etc., are therefore
analytical in U for U→0 within the VCA. The same holds
for the one-particle excitation gap while the exact gap is
nonanalytic at U=0 �cf. Eq. �3��. That this nonanalyticity
cannot be reproduced within the VCA should be interpreted
as a rather general failure that is inherent to any cluster con-
cept. Qualitative changes at a critical point resulting from the
limiting process Lc→� are beyond a scheme based on finite
clusters.

So far the discussion has been restricted to calculations
using a single variational parameter. More parameters can be
useful for different reasons. First, we note that the optimal
self-energy provided in a real-space cluster technique does
not reflect the full translational symmetry of the original lat-
tice problem and that finite-size effects are expected to be the
most pronounced at the cluster boundary. This suggests to
use reference systems with site-or bond-dependent varia-
tional parameters. For the case of particle-hole symmetry,
obvious choices are displayed in Fig. 1, B where the intra-
cluster hopping at the edges of the chain are allowed to take
a different value, and in Fig. 1, C where more or all hopping
parameters are varied independently.

Figure 7 shows the numerical results for U=4. We find
that the optimal hopping varies between different nearest
neighbors within a range of less than 10%. At the chain
edges the optimal hopping is enhanced to compensate the
loss of itinerancy due to the switched-off intercluster hop-
ping within the VCA. With increasing distance to the edges,
the hopping quickly decreases. Quite generally, the third
hopping parameter is already close to the physical hopping t.
Looking at the Lc=10 results where all �five� different hop-
ping parameters have been varied independently �orange
circles�, one can see the hopping to slightly oscillate around
the bulk value reminiscent of surface Friedel oscillations.

The optimal SFT grand potential is found to be lower for
the inhomogeneous cases as compared to the homogeneous
�black� one. Generally, the more variational parameters are
taken into account, the higher is the decrease of the SFT
grand potential at optimal parameters. However, the binding-
energy gain due to inhomogeneous hopping parameters is
much smaller compared to the gain obtained with a larger
cluster. Likewise, there is merely a marginal improvement as
concerns the single-particle gap.

Considering an additional hopping parameter tpbc linking
the two chain edges as a variational parameter �Fig. 1, D�
always gives a minimal SFT grand potential at tpbc=0. This

implies that open boundary conditions are preferred as com-
pared to periodic boundary conditions �which would be
given by a stationary point at tpbc=1�. The issue has already
been discussed in Ref. 21.

With the reference system Fig. 1, E we can check whether
or not a magnetic frustration develops in the reference sys-
tem. A hopping t2� between next-nearest neighbors leads in
the Heisenberg limit U→� to an antiferromagnetic next-
nearest-neighbor exchange J2 and thus to a frustration of
antiferromagnetic �short-range� order. This would partially
compensate the residual mean-field character of the VCA
with respect to magnetic properties. At the same time, how-
ever, particle-hole symmetry would be violated. It turns out,
however, that the SFT grand potential has a saddle point with
t2�=0. �It is at a minimum with respect to t1� and at a maxi-
mum with respect to t2��.

A third-nearest-neighbor hopping would not lead to frus-
tration and would also respect particle-hole symmetry. Opti-
mization of an Lc=6-site cluster at U=4 as indicated in Fig.
1, F yields an optimal nearest-neighbor hopping t1�
1.04 and
third-nearest-neighbor hopping t2�
−0.02. This shows that
hopping parameters that are not present in the original sys-
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tem can get a finite value when treated as variational param-
eters in the reference system. The corresponding decrease of
the SFT grand potential is marginal, however. Consequently,
we disregard such variational parameters in the following.

B. Bath degrees of freedom

A different possibility to increase the number of varia-
tional parameters is to introduce additional uncorrelated
�“bath”� sites. As there is no Hubbard interaction on the bath
sites, the interaction part of the Hamiltonian is left un-
changed, as it is necessary for an allowed reference system
within the SFT.22 Note that the trial self-energy �ij��� is still
labeled by the correlated sites only. We consider reference
systems where all or some of the original correlated sites are
coupled to bath sites via a hopping �“hybridization”� of
strength V. For each correlated site i the different hybridiza-
tion parameters Vi�i

as well as the one-particle energies of the
bath sites �i�i

for �i=2, . . . ,ns�i� can be treated as variational
parameters. Here ns�i�−1 is the number of bath sites for a
given correlated site i. The inclusion of bath sites improves
the description of temporal instead of spatial degrees of free-
dom. For Lc=1 one recovers the DMFT, for Lc�1 the cel-
lular DMFT in the limit ns�i�=ns→�.21 Calculations using
the Lanczos method are feasible, however, for small ns only.

Particle-hole symmetry considerably reduces the number
of variational parameters that have to be varied indepen-
dently. For a single bath site �ns�i�=2�, the bath on-site en-
ergy is pinned to the chemical potential, �=�=U /2, and
only the hybridization V is free. For ns�i�=3 we have �
=���� with a variational parameter ��. Both bath sites
couple with the same V to the correlated site.

For a cluster approximation with Lc�1, baths should be
different for inequivalent correlated sites. It has to be ex-
pected, for example, that bath sites at the cluster boundary
are more efficient to compensate for the disregarded inter-
cluster hopping processes than bath sites coupled to the clus-
ter center. This can be studied using the reference system G
in Fig. 1 which includes a coupling to a bath site at the edges
�V1� and at the central sites �V2� of a cluster with Lc=4
correlated sites. Figure 8 shows the results of the according
VCA calculation. Both the inner and the outer bath sites
couple to the system with a finite hybridization and thereby
lead to a decrease of the optimal SFT grand potential as
compared to vanishing hybridization. For the outer ones,
however, this binding-energy gain is about 1 order of mag-
nitude higher. Also the optimal hybridization is much larger
for the outer bath sites.

This suggests to neglect the coupling of bath sites to the
correlated sites at the center of the chain completely, i.e., to
switch off V2 and to consider reference system H in Fig. 1.
As can be seen in Fig. 8, this represents an excellent approxi-
mation. Comparing the results for the reference systems G
and H with each other by looking at the trend of ��V1�
=����V1�� for optimal V2 and for V2=0, respectively, we
find the optimal SFT grand potential to be only slightly
higher and the optimal hybridization V1 almost unchanged.

The idea of attaching bath sites at the cluster edges only is
pursued with the calculations shown in Fig. 9. We employ

reference system H. For any cluster size from Lc=2 to Lc
=8, it is found that edge bath sites couple to the system and
decrease the SFT grand potential. For Lc=4 and U=4 �see
figure� this decrease amounts to �� /L
0.002. For stronger
interactions the cluster approximation generally tends to im-
prove. Consequently, the optimal hybridization becomes
smaller. The optimal grand potential at U=8, for example,
decreases by �� /L
0.0001 due to the bath sites which is 1
order of magnitude less than for U=4. It must be emphasized
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that thanks to the Q-matrix technique,34 which completely
avoids frequency summations or integrations, there are no
numerical problems to accurately compute energy differ-
ences of this or even lower order of magnitude. From the
numerical point of view, this is an important step forward as
compared to earlier evaluations of the SFT grand potential
using integrations over frequencies �+ i� with real � and
subsequent extrapolation �→0 �cf. Refs. 21 and 34 for a
detailed comparison�.

Attaching bath sites and thereby allowing the electrons to
hop into the bath and back to the original site and thereby to
gain kinetic energy turns out to be more effective than the
gain in kinetic energy that is obtained by optimizing �and
increasing� the intracluster hopping t�. This is demonstrated
in the figure by calculations using the reference system I
where the hybridization to edge bath sites and the intracluster
hopping are optimized simultaneously. Comparing the results
for reference systems H and I shows that for any Lc the
binding-energy gain due to the coupling of bath sites is con-
siderably larger.

Figure 9 also includes the result of a calculation using
reference system J �with Lc=4� where there is one bath site
for any correlated site �not only at the edges� but still only a
single hybridization strength that is optimized by assuming
this to be the same for all bath sites. It is interesting to note
that this reference system turns out to be inferior as com-
pared to I and also to H �the SFT grand potential at the
minimum is higher� although there are two more bath sites.
This once more demonstrates the ineffectiveness of bath sites
coupled to the center of the Hubbard chain.

With increasing Lc the optimal SFT grand potential �using
reference system H, for example� nicely converges to the
exact value which is shown in Fig. 9 for comparison. It is
important to note that the inclusion of bath sites hardly
speeds up this convergence. For any given cluster size Lc, the
additional inclusion of two more bath sites gives a binding-
energy gain considerably smaller than the gain obtained by a
cluster with two more correlated sites. This also holds true if
more bath sites are taken into account. The decisive lowering
of the SFT grand potential is always due to a larger cluster
size. Concluding, bath sites are quite ineffective as far as the
grand potential or the ground-state energy is concerned.

It is an interesting question whether or not bath sites at the
edges of the cluster finally decouple from the correlated sites
for Lc→�, i.e., whether or not the respective optimal V van-
ishes in this limit. For bath sites coupled to the center of the
cluster, a decoupling V→0 is quite plausible physically and
is actually foreshadowed by the results shown in Fig. 8 for
reference system G. For edge bath sites, the optimal V is
shown in Fig. 10 as a function of the inverse cluster size. As
a simple cubic spline extrapolation shows, the results are
compatible with a finite V for Lc→� �red dashed line� but
also V=0 cannot be excluded. From the results shown in Fig.
9 it appears obvious that a minimum of ����t��� /L is found
for any finite Lc. A finite position of the minimum for Lc
→� would imply an interesting behavior of the SFT grand
potential as function of V as this must become completely
flat �at least in a finite V range around V=0�.

While bath sites are of minor importance as concerns
static quantities such as the ground-state energy, they are

decisive for dynamical quantities and for the single-particle
excitation gap �, in particular. This shall be demonstrated in
the following. As argued above, a cluster method is likely to
fail close to the critical point U=0. Predicting the gap away
from the critical point, however, can serve as any strong test
for a cluster technique.

Table I shows results for the � at intermediate coupling
U=4 as obtained within different approaches. By evaluation
of Eq. �3� we find the exact value �=1.287. As it is well
known, a metallic state with �=0 is predicted by static
mean-field theory and, for U=4, by dynamical single-site
approximations �dynamical impurity approximation22 and
DMFT�. On the other hand, even the most simple cluster
approach, i.e., the VCA for Lc=2 and ns=1 �without bath
sites�, predicts a finite gap but strongly overestimates its size.
Improvement is possible using larger clusters, but even for
Lc=10 the gap is overestimated by about 18% �see also Fig.
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TABLE I. Single-particle excitation gap at U=4 as obtained
within the VCA using different reference systems as indicated �see
Fig. 1�. We set t=1. C-DMFT result for Lc=2 and ns=3 �Ref. 30�.

Excitation gap �

Exact,a Eq. �3� 1.287

DMFT 0.0

VCA, A, Lc=2 1.846

VCA, A, Lc=10 1.516

VCA, C, Lc=10 1.518

VCA, H, Lc=2, ns=2 0.238

VCA, H, Lc=4, ns=2 �edge� 0.079

VCA, L, Lc=2, ns=4 0.009

VCA, K, Lc=2, ns=3 1.181

VCA, K, Lc=4, ns=3 �edge� 1.213

C-DMFTb 1.14

aReference 28.
bReference 30.
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6�. This remains essentially unchanged even with a full op-
timization of five different hopping parameters �Table I,
VCA for reference system C�.

Introducing bath sites completely changes the situation.
Using reference system H, i.e., Lc=2 correlated sites with
one bath site attached to each �ns=2�, yields a gap which is
drastically too small. The result becomes even worse,
namely, the gap is almost closed, when increasing the cluster
size to Lc=4 but still keeping one bath site attached to each
of the two edge correlated sites. We infer that while the ns
=2 cluster nicely improves the ground-state energy, it appar-
ently fails to describe the excitation gap.

Using one more bath site �reference system K, ns=3� and
Lc=2 yields a further but negligibly small decrease of the
ground-state energy but a gap that comes very close to the
exact one �which is underestimated by about 8%�. Now, an
increase of the cluster size to Lc=4 yields further improve-
ment, namely, a gap that underestimates the exact one by 6%
only. Adding another bath site at each of the cluster edges,
i.e., ns=4 �reference system L�, yields an almost vanishing
gap again. We conclude that there is a sizable odd-even ef-
fect with respect to the number of bath sites, and that a
reliable prediction of the gap requires an even number �i.e.,
ns odd�. Given this, the inclusion of bath sites is of crucial
importance for an accurate determination of single-particle
excitations and the insulating gap.

We would like to stress that due to the SFT variational
principle and due the Q-matrix technique there is no adjust-
able parameter in the calculation of the gap, once the refer-
ence system is specified. It has been verified that the results
are converged with respect to the size of the original D=1
Hubbard model �L
103� and with respect to the number of
Lanczos steps �SL
100�. Within the cellular DMFT �using
Lanczos as a cluster solver� on the other hand, the gap value
somewhat depends on the projection criterion employed to
fix the bath parameters. In Ref. 30 the definition of the
C-DMFT gap is furthermore adjusted to recover the exact
value in the strong-coupling limit. Thereby, a gap of �
=1.14 is obtained for an Lc=2, ns=3 cluster which is close to
our result �see Table I�.

Using the reference system K with Lc=4 and ns=3, we
have computed the gap also for different U. The deviation to
the exact result is found to decrease further for stronger in-
teractions and amounts to 1.7% for U=6 and 0.3% for U
=8. The gap size is underestimated. For smaller U, devia-
tions are larger �underestimation of 10% and 7% for U=3
and U=2, respectively�. Compared with the C-DMFT
results,30 however, this is still a considerable improvement.
As a cluster approach the VCA cannot reproduce the expo-
nentially small gap in the critical regime and finally overes-
timates the gap size with a relative error of about 340% at
U=1 being a typical example �here the exact gap is �
=0.005�.

To analyze the origin of the apparent odd-even effect, we
discuss the interacting local density of states �LDOS� which
is shown in Fig. 11 for U=4. The LDOS is calculated from
the imaginary part of the local VCA Green’s function which,
opposed to DMFT or C-DMFT, differs from the cluster
Green’s function. Since a real-space cluster approach neces-
sarily breaks translational symmetry, the LDOS is computed

for a central cluster site where convergence for Lc→� is
expected to be the fastest. The LDOS turns out to be nonva-
nishing on a large number of small but finite frequency in-
tervals. This structure is an artifact that is due to the finite
Hilbert space corresponding to the reference system and due
to the corresponding discrete pole structure of the VCA self-
energy. A smooth LDOS can therefore only be obtained with
some additional broadening. For the figure we have used a
Lorentzian broadening with a comparatively large broaden-
ing parameter �=0.2 �blue lines� while the gap size �which is
calculated for �=0� can be read off quite accurately from the
spectra with small �=0.005 �red lines�.

Comparing the results for the different reference systems
with each other, we find the same overall structure of the
LDOS in all cases but also significant finite-size effects. The
latter prevent a reliable prediction of the detailed shape of the
LDOS. While we expect the Lc=10 cluster �without bath
sites, upper panel� to give the best estimate for the LDOS in
general, the discussion above has shown that the Lc=4, ns
=3 cluster yields a much more reliable prediction of the in-
sulating gap �middle�. Looking at the result for �=0.005, a
deviation from the exact result is, in fact, hardly visible on
the scale of the figure for this cluster. Contrary, the LDOS
computed for the Lc=4, ns=2 cluster �lower panel� clearly
shows finite spectral weight for frequencies much smaller
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than the exact gap �see also the inset�. This weight is rather
small but significant as can be seen by varying the chemical
potential: A slight decrease from its particle-hole symmetric
value �=U /2 of about ��=0.04 is sufficient to produce a
metallic state.

To understand the failure of the Lc=4, ns=2 approxima-
tion, one can �ad hoc� decrease the intracluster nearest-
neighbor hopping from t�= t to t�=0 in the reference system.
This results in an LDOS with a three-peak structure consist-
ing of the two Hubbard bands and a quasiparticle peak at
�=0 as it is typical for the metallic solution of the half-filled
Hubbard model within a dynamical impurity �mean-field� ap-
proximation given by Lc=1. The spectral weight in Fig. 11
�lower panel� that is responsible for the too small gap in the
case of ns=2 �odd number of bath sites�, thereby continu-
ously evolves into the quasiparticle peak of the metallic
mean-field LDOS. Now, within the dynamical impurity ap-
proximation, such a metallic LDOS at half-filling is always
produced by an odd number of bath sites where one bath site
has a one-particle energy exactly at the Fermi edge � while
the energies of the remaining are located symmetrically to �.
Due to a decreasing and eventually vanishing hybridization
strength, this Fermi-edge bath site decouples from the rest of
the reference system upon approaching the Mott insulator
with increasing U. The Mott insulator itself is therefore char-
acterized by an even number of bath sites. We therefore in-
terpret the occurrence �absence� of low-frequency spectral
weight within the exact gap as being a reminiscence of the
low-frequency character of the corresponding metallic �insu-
lating� mean-field solution. Hence, a reasonable description
of the Mott insulator and a reliable prediction of the insulat-
ing gap requires an even number of bath sites per correlated
site also in the case of cluster �Lc�1� approximations.

Finally, we compare our results for the local Green’s func-
tion on the imaginary frequency axis with calculations by
Hafermann et al. �see Ref. 45� for U=6. Figure 12 shows our
VCA results for the Lc=2 cluster with ns=3 local degrees of

freedom per correlated site in comparison with essentially
exact dynamical DMRG data. As compared with Lc=2 cel-
lular DMFT using weak-coupling continuous-time quantum
Monte Carlo at finite temperature �1 /T=�=20�, there is a
marginal improvement only. We would like to stress, how-
ever, that the VCA calculations are computationally much
cheaper. The cluster dual-fermion approach for Lc=2 �and
�=20� gives a considerably better result and is already quite
close to the DMRG data. Further improvement is possible
for larger clusters. VCA calculations for the Lc=4, ns=3 ref-
erence system, i.e., with two more correlated sites, are hardly
distinguishable from the DMRG.

VI. FILLING-DEPENDENT MOTT TRANSITION

To complete the benchmarking of different cluster ap-
proximations, we study the metallic phase off half-filling and
the filling-dependent Mott transition. The metallic phase is
characterized by a finite compressibility 	 �see Eq. �4��.
Changing the electron density �filling� n by changing the
chemical potential � at fixed U, the Mott insulator at n=1 is
approached with a diverging 	→� for n→1 �see Eqs. �5�
and �6��.

An approximation that is based on a cluster with a finite
�and small� number of degrees of freedom necessarily im-
plies a strongly limited frequency resolution and thus a
rough description of low-frequency physical properties. We
therefore expect that it is more difficult within the VCA to
describe a metallic state with gapless single-particle excita-
tions as compared to the description of a gapped Mott-
insulating state. On the other hand, this argument neglects
the fact that the limitation of the frequency resolution can
at least partly be compensated for by an adaption of the
cluster one-particle parameters. This is well known from the
DMFT-ED approach33 as well as from dynamical impurity
approximations22 which show that the low-frequency quasi-
particle �Kondo� resonance can be accessed with a few sites
only. At least technically, however, VCA calculations are
more difficult for the metallic state. This is simply due to the
fact that, for a given cluster size, the absence of particle-hole
symmetry implies an increased number of independent varia-
tional parameters to be optimized.

A. Variation of one-particle energies

It suggests itself, for example, to include an overall shift
of the one-particle energies of the cluster sites into the set of
variational parameters. Note that for the particle-hole sym-
metric case this shift is irrelevant �the VCA grand potential is
stationary at a vanishing shift�. At a finite hole concentration,
however, the grand potential is at a maximum for a finite
shift �which is different from the shift of the chemical poten-
tial�. As has been shown in Ref. 34, this ensures the thermo-
dynamical consistency of the approach with respect to the
particle number. Especially for the filling-dependent Mott
transition, it is important that the filling calculated from the
�approximate� interacting density of states,
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n =
1

L
�
i�
�

−�

0

d��i���� , �12�

where �i����= �−1 /��Im Gii���+ i0+�, gives the same result
as the filling calculated from the �approximate� grand poten-
tial,

n = −
1

L

��

��
, �13�

i.e., that calculations on the level of one-particle excitations
are consistent with those on the �zero-particle� static thermo-
dynamical level.

The one-particle excitation spectrum is most accurately
determined by using the dynamical density-matrix
renormalization-group �DMRG� technique46 or the quantum
Monte Carlo approach.47,48 The essential features of the
spectrum, including the more intense spinon and holon
bands, however, are already accessible using finite Hubbard
chains of rather small size �e.g., Lc=10�. This has already
been demonstrated by calculations using cluster-perturbation
theory �CPT�,20 i.e., VCA without any parameter optimiza-
tion at all. Even for Lc=2 and a number of ns−1=2 addi-
tional bath sites per correlated site, the overall spectrum is in
very good agreement with the more accurate DMRG results
as has been demonstrated by Capone et al.31

Here we would like to focus on a different point which is
relevant for any cluster approach. This is illustrated in Fig.
13 for an isolated cluster with Lc=10 sites. Due to the U�1�
symmetry of the grand-canonical cluster Hamiltonian H�, the
cluster ground state has a definite total particle number Nc
which, depending on the chemical potential �, can vary from
Nc=0 to Nc=2Lc. Hence, the density nc=Nc /Lc acquires dis-
crete values only when varying � and discontinuously jumps
at certain critical chemical potentials �c,i. As is demonstrated
by the figure, this is a strong finite-size effect that cannot be

tolerated if one is interested in the filling-dependent Mott
transition of the system in the thermodynamical limit.

Therefore, it is an obvious question whether it is possible
to predict a continuous and reliable trend of the filling as a
function of � for Lc→� but using an approximation based
on finite �small� clusters only. This is also related to the
question whether one can access systems with an arbitrarily
low hole concentration �=1−n as it is necessary, for ex-
ample, to recover the compressibility divergence for �→0.

By considering an infinite system of disconnected clusters
and by reintroducing the intercluster hopping in the lowest
nontrivial order, cluster-perturbation theory directly works in
the thermodynamical limit. Therefore, CPT could by able to
predict a continuous � dependence, in principle. As can be
seen from Fig. 14, CPT, in fact, gives a metallic state with a
compressibility 	 that is finite everywhere except for the
critical chemical potentials of the isolated cluster at �=�c,i.
This is a substantial improvement as compared to the direct
diagonalization where 	�0 �except for �=�c,i�. However,
the obvious disadvantage is that the CPT filling exhibits fi-
nite jumps at �=�c,i. This is easily understood by looking at
Eq. �12� since for each �=�c,i there is a discontinuous
change of the ground state of the �grand-canonical� cluster
Hamiltonian which implies a discontinuous change of the
cluster Green’s function G���� and thus of the lattice �CPT�
Green’s function G���= �G����−1− �t− t���−1.

Essentially the same applies to the case where n is calcu-
lated as the � derivative of the grand potential, see Eqs. �10�
and �13�. Furthermore, the comparison of the results ob-
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tained from Eqs. �12� and �13� illustrates the thermodynami-
cal inconsistency of the CPT �see Fig. 14�. Compared with
the exact Bethe ansatz result, it turns out to be much better to
calculate the filling from the CPT density of states.

We conclude that plain CPT cannot describe the filling-
dependent Mott transition and exhibits severe problems in
describing the trend of n as a function of the chemical po-
tential. Restricting the approach to the discrete set of cluster
densities, however, gives rather satisfactory results. Figure
14 shows that the chemical potential, where the CPT filling
equals one of the accessible cluster fillings, is close to the
exact � corresponding to that filling and that both ways to
compute n �Eqs. �12� and �13�� almost yield the same result.
This is nicely demonstrated in the inset for n=0.4 and n
=0.6. However, there are still problems, even for an acces-
sible cluster filling as, for example, in the case of n=0.5
where no unique chemical potential can be read off and 	
�0 in a finite � range �see inset again�.

The situation changes completely when using the varia-
tional cluster approximation. The most simple reference sys-
tem consists of isolated clusters where only an overall shift
of the on-site energies is taken as a variational parameter to
guarantee thermodynamical consistency, see Fig. 15, A. The
corresponding results for clusters of different size Lc are
shown in Fig. 16.

Apart from thermodynamical consistency, the most im-
portant difference as compared to the CPT consists in the
fact that a continuous � dependence is found in the entire
range from �=−2 �empty band� to �=�c �half-filling�. This
has explicitly been checked for clusters with Lc
=2,4 ,6 ,8 ,10. It turns out that the optimal value for the shift
of the on-site energies �partly� compensates for the deviation
of the chemical potential from its particle-hole symmetric
value �=U /2 such that �due to the large Mott-Hubbard gap�
the cluster ground state is always found in the subspace
where the cluster itself is half-filled �Nc=Lc�. The cluster
ground state, the optimal self-energy, and eventually the fill-
ing n thereby continuously depend on �. This mechanism
also works down to �=−2.

Figure 16 displays the critical regime close to half-filling
only. We find that the critical value of the chemical potential
�c where the transition from the metal to the Mott-insulating
state takes place, increases with increasing cluster size Lc
and converges to the exact result. The figure also shows,
however, that this convergence is rather slow. Furthermore, it
remains unclear whether or not the compressibility diver-

gence can be recovered in the limit Lc→�: Note that the
slope of n��� �i.e., 	� for n→1 appears to decrease with
increasing Lc. This might be explained by the argument that,
even for Lc→� and even with optimized cluster one-particle
parameters, a trial self-energy taken from the Nc=Lc sub-
space cannot describe the physics of a metallic state entirely
correct.

We conclude that the continuous dependence on � is
achieved at the cost of fixing the cluster ground state to half-
filling. This problem becomes more and more severe with
decreasing filling. The inset of Fig. 16 shows a calculation
for Lc=4 illustrating this issue. For the calculation with Nc
=Lc=4, the filling is reasonably close to the exact filling in
the vicinity of half-filling only. In the vicinity of quarter
filling, however, a much better result is obtained with a VCA
calculation starting from a cluster ground state with Nc=2
=Lc /2 �quarter-filled cluster�. This is physically plausible.

B. Bath degrees of freedom

As has been seen in the discussion of the results for half-
filling, bath sites can considerably help us to improve a clus-
ter approximation. This is all the more important in the case
of a metallic system off half-filling since bath sites also serve
as charge reservoirs. Varying the chemical potential or an-
other physical model parameter, the electron density on the
correlated sites can vary smoothly by a charge flow from and
to the uncorrelated bath sites in the reference system.

Opposed to �cellular� DMFT, the filling in the original
model n, as calculated from the approximate VCA lattice
Green’s function, is generally different from the density at
the correlated sites in the �cluster� reference system n�. By
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FIG. 15. �Color online� The original system and different refer-
ence systems with corresponding variational parameters. See text
for discussion.
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rule of thumb, however, the deviations are small, i.e., n

n�. This implies that all fillings from n=0 up to n=1 �half-
filling� can be realized by using a strictly half-filled reference
system provided that the cluster includes �at least� one bath
site per correlated site �ns=2�. Consider, for example, a clus-
ter with Lc=2 correlated and ns−1=1 bath site per correlated
site. In total the cluster then consists of L�=4 sites. For
particle-hole symmetric parameters, the cluster ground state
lies in the subspace with Ntot� =4 electrons, and symmetry
arguments imply an electron density n�=1 on the correlated
and nbath� =1 on the bath sites. This corresponds to half-filling,
n=1, for the original model. For n
1 we will find n�
n

1 and nbath� �1 such that n�+nbath� =2, i.e., a half-filled clus-
ter ground state. In the limit n→0, the Ntot� =4 electrons will
mostly be located on the bath sites, i.e., n�→0 and nbath�
→2. Analogous arguments hold for fillings above half-
filling. This mechanism promises continuous dependencies
on the chemical potential with a cluster ground state staying
in the Ntot� =L� subspace, while the physical properties are
governed by the density on the correlated sites n�
n, which
varies smoothly with �.

We have not been able to find a stationary point by using
two bath sites per correlated site �ns=3�. Remembering the
discussion of the half-filled case, this does not appear to be
uncommon, since a reference system with an even number of
bath sites per correlated site is expected to give a good de-
scription of the Mott insulator but not of the metal. For the
calculations we therefore concentrate on reference systems
with ns=2. For simplicity, we attach one bath site to any of
the correlated sites and assume the hybridization V to be the
same for all sites. Additional variational parameters are � and
��, the one-particle energies of the correlated and of the bath
sites which are assumed to be constant again. The reference
system is displayed in Fig. 15, B.

Numerical results for clusters with Lc=2 and Lc=4 corre-
lated sites are shown in Fig. 17. Irrespective of the cluster
size, there is an excellent agreement with the exact result for

fillings lower than n
0.75. However, also for higher fillings
the VCA results with bath sites are convincing and represent
a considerable improvement as compared to the CPT results
�Fig. 14� but also compared to the VCA results without bath
sites �Fig. 16�. The critical chemical potential �c for the tran-
sition to the Mott insulator is somewhat overestimated but
the error is much smaller than the underestimation of �c
within VCA without bath sites. More important, however, it
appears that the approach correctly predicts the divergence of
the compressibility. Unfortunately, it has turned out to be
extremely difficult numerically to follow up the stationary
point as a function of � in the region very close to half-
filling. The C-DMFT results of Capone et al.,31 which are
also shown in the figure, are slightly closer to the exact n���.
Note, however, that this has been achieved and crucially de-
pends on a special �but physically motivated� choice for the
distance measure which emphasizes the low Matsubara fre-
quencies. In contrast, our approximation is free from any
adjustable parameter.

Note that Lc and the number of bath sites per correlated
site �i.e., ns−1� do not fully specify the reference system.
Different systems can be generated by the different ways in
which bath sites are coupled to the correlated ones. Refer-
ence system C in Fig. 15, for example, is characterized by
Lc=2 and ns=2 but spans �when independently varying all
one-particle parameters� a space of trial self-energies which
differs from the one spanned by reference system B �with
Lc=2�. In the limit ns→�, i.e., for the case of cellular
DMFT, the different ways of coupling the baths to the cor-
related sites do not matter as they can be mapped onto each
other by unitary transformations and therefore span the same
space of trial self-energies. This is different, however, for
small ns. As is demonstrated in the following, reference sys-
tems B and C yield very similar results for the metallic phase
while C gives a much better description of the Mott insulator.

Any bath site in reference system C is connected via hy-
bridizations V1 and V2 to both correlated sites. Requiring the
self-energy to be symmetric with respect to an interchange of
the two correlated sites implies that the modulus of the two
hybridization parameters must be the same, i.e., V1= �V2 �if
the hybridization is assumed to be real�. We consider two
bath sites, one with V1=−V2�Va and another one with V1
=V2�Vb. This is the only choice left if the reference system
is required to respect particle-hole symmetry for �=U /2.
Consequently, there are five independent variational param-
eters in total, Va and Vb, the bath on-site energies, �a and �b,
and a general shift of all on-site energies �including the cor-
related sites� ��.

Figure 18 shows the optimal values of these parameters as
functions of the chemical potential. At half-filling in the Mott
insulator, i.e., for ���c, the parameters are � independent.
The overall shift of the on-site energies �� vanishes, Va
=Vb, and �a+�b=U. For the particle-hole symmetric point at
�=U /2, these restrictions are enforced by symmetry and re-
spected by the approximation. The parameters evolve con-
tinuously with � except for �=�c
1.42, i.e., at the metal-
insulator transition. With decreasing �, the bath on-site
energies decrease. This results in an increasing bath-site den-
sity n� and thus in a decreasing filling n as described above.
In the entire � range, the reference system remains strictly
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half-filled. At �
−0.76 the hybridization of bath site “a”
vanishes, i.e., this site decouples from the system. Since �a
+��
� the site is completely occupied. For lower � the
remaining reference system therefore consists of the two cor-
related and merely a single uncorrelated bath site to be filled
with two electrons in total. As �→−2 also the second bath
site “b” decouples �Vb→0� taking both electrons left such
that the filling n→0. The bath sites perfectly do their job as
charge reservoirs.

The resulting filling as a function of � is displayed in Fig.
19. The agreement with the exact Bethe ansatz result is ex-
cellent for low and intermediate fillings. A slight deviation is
found for fillings n�0.8. Nevertheless, the qualitative trend
is predicted correctly including the divergence of the com-
pressibility. As compared to the results of reference system
B, there is hardly any difference on the scale of the figure.

The critical chemical potential turns out to be �c
1.42
within the VCA. This should be compared with the VCA
result �using the same reference system� for the Mott-
insulating gap �=1.128 which is read off from the LDOS at
half-filling. Via

� = 2�U/2 − �c� �14�

this implies a critical chemical potential of �c=1.436. The
small difference in the results for �c is most probably caused

by numerical problems to locate the stationary point for the
critical regime in the metallic phase near the transition. The
predicted gap is close to the gap found with reference system
K in Fig. 1 for Lc=2 which implies that, opposed to refer-
ence system B �Fig. 15�, not only the metallic phase in the
entire filling range but also the Mott insulator is well de-
scribed. Considering the small size of the cluster this is ac-
tually a surprisingly good and very satisfying result.

We also note that the VCA calculation fully respects Lut-
tinger’s sum rule49 in the entire filling range. While for a
translationally invariant system the sum rule states that the
filling equals the range in reciprocal space enclosed by the
Fermi points, a generalized form of the sum rule �given in
Ref. 35� must be considered here to account for the artifi-
cially reduced symmetry resulting from the cluster approxi-
mation. The main idea is that the sum rule can be derived
from the equation limT→0 Tr���G /��i�n��=0. This can be
tested even if the approximate self-energy and the �via Dys-
on’s equation� related Green’s function do not respect the
translational symmetries of the underlying lattice and even if
the system under consideration is finite. We find that the sum
rule already holds for the reference system C itself. As has
been discussed recently,35 due to the conserving nature of the
VCA, the validity of the sum rule for the reference system is
then transferred to the approximate quantities for the lattice
problem.

Figure 19 also includes the prediction of single-site
DMFT. While close to half-filling the mean-field theory fails
completely, hardly any difference to the exact result can be
detected for fillings lower than n
0.6. It is worth mention-
ing that the results of full DMFT are quantitatively recovered
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by the most simple dynamical impurity approximation �DIA�
within the framework of SFT, namely, by using a reference
system consisting of the single correlated and a single bath
site only �Lc=1, ns=2�. Both n��� curves, taken from DMFT
and from the DIA, are identical on the scale of the figure.

VII. CONCLUSIONS

Cluster mean-field theories that are based on full diago-
nalization or on the Lanczos technique to treat the effective
cluster problem exhibit a number of advantages: They di-
rectly work at zero temperature, they are flexible and can
equally well treat arbitrary geometries, and they provide the
numerically exact solution of the cluster within a compara-
tively short CPU time. These advantages are achieved at the
cost of a strongly limited cluster size �of the order of ten
sites� dictated by the exponential dependence of the cluster
Hilbert-space dimension on system size. It is therefore of
highest importance to make use of the cluster degrees of
freedom in the best possible way. This can be accomplished
with the self-energy-functional theory. The SFT allows us to
fix the cluster one-particle parameters with the help of a
physical variational principle that is constructed for the op-
timization of the one-particle excitation properties.

The actual choice of the reference system, however, is not
prescribed by the approach itself, i.e., different cluster to-
pologies and thus different cluster approximations are con-
ceivable. This is the motivation for the present study. With
the focus on the interaction- and filling-dependent Mott
metal-insulator transition, as a prime example of a correla-
tion effect, different reference systems have been tested
against each other and against exact results available for the
one-dimensional case. Note that a one-dimensional lattice
model actually represents the most difficult test case for a
cluster approximation.

In the following we recapitulate the main results of our
study. First of all, the Mott-insulating state of the model at
the particle-hole symmetric point is well described by a clus-
ter approximation using a few correlated sites only. In par-
ticular, the ground-state energy can be determined precisely
using finite-size scaling. Already the most simple implemen-
tation of the VCA including merely an overall optimization
of the intracluster hopping clearly improves on the direct
cluster approximation. However, as compared to plain
cluster-perturbation theory without any parameter optimiza-
tion at all �but combined with the expression for the SFT
grand potential�, the VCA yields a marginally improved
ground-state energy only.

Similarly, the independent optimization of several or even
of all intracluster nearest-neighbor hopping parameters leads
to a gain in binding energy but this is small compared to the
gain obtained by increasing the cluster size by two more
sites. With increasing distance to the chain edges, the opti-
mized hopping quickly converges to the “physical” value,
and bulk properties are already found for sites at a distance
of more than two nearest-neighbor units from the cluster
edge. Hopping parameters vanishing in the original model
can acquire a nonzero but small value in the optimized ref-
erence system. Hopping parameters linking the edges of a

cluster are found to vanish, i.e., the VCA prefers open
boundary conditions. The same holds for hopping parameters
which would imply a breaking of particle-hole symmetry: A
next-nearest-neighbor hopping, for example, turns out to be
zero at the stationary point.

The VCA correctly predicts a Mott-insulating state for
any U�0. It also gives a reasonable estimate for the size of
the single-particle insulating gap. This estimate improves
with increasing interaction strength. While for strong and
intermediate coupling the optimal results �for the ground-
state energy as well as for the gap� are obtained for reference
systems with parameters close to the original model, strongly
deviating parameters �more than 100%� are favorable in the
weak-coupling regime. Eventually, for U→0 the VCA �and
presumably any real-space cluster approach� fails to describe
the low-energy physics of the Mott transition. Remembering
the cluster mean-field nature of the approximation, this had
to be expected. It is obvious that critical behavior cannot be
accessed while, on the other hand, it is satisfying that physi-
cal properties on a higher-energy scale are accurately cap-
tured with rather small clusters only.

The additional consideration of bath sites in the reference
system always yields an improved ground-state energy. It has
turned out that bath sites tend to decouple from a cluster
reference system at the correlated sites in the cluster center
while they tightly couple to the system at the chain edges. As
concerns the ground-state energy, however, this hardly
speeds up the convergence to the exact result with increasing
cluster size. Going to the next larger cluster is always found
to be more effective.

On the contrary, bath sites decisively influence the de-
scription of the one-particle excitation spectrum. Cluster ref-
erence systems with an even number of additional bath sites
coupled to a correlated site �at the cluster edge� give a much
better result for the gap than clusters without bath sites but
more correlated sites. This demonstrates the importance of
local correlations for the one-particle spectrum. An odd num-
ber of bath sites per correlated site overemphasizes the
mean-field character and thereby fails to predict the gap ac-
curately.

The overall features of the local density of states �insulat-
ing gap, moments, etc.� are addressed when looking at the
local one-particle Green’s function on the imaginary fre-
quency axis. Using essentially exact dynamical DMRG re-
sults as a benchmark, we find our VCA results to be fully
competitive with cellular DMFT calculations for the same
Lc. While C-DMFT combined with a stochastic technique as
a cluster solver is much more time consuming, C-DMFT
�Lc=2, ns=3� combined with Lanczos is less reliable as the
VCA �Lc=2, ns=3�. The latter gives a significantly better
result for the insulating gap which, apart from the choice of
the reference system, is unbiased and free of parameter fit-
ting. This shows that the thermodynamically consistent de-
termination of the cluster parameters is worth the effort. Pre-
dicting the detailed shape of the local density of states �for
real frequencies� is beyond the capabilities of a cluster ap-
proach based on the Lanczos method: Finite-size effects are
clearly present.

As concerns characteristic quantities of the Mott insulator
at half-filling, one can state that the convergence to the exact
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result is mainly determined by the number of correlated sites.
The additional inclusion of a continuum of bath degrees of
freedom or of a large number of bath sites appears to be
unnecessary. A few bath sites, however, can strongly improve
the results. For the description of the metallic phase off half-
filling and of the filling-dependent Mott transition this is
even more correct.

Without the inclusion of bath degrees of freedom, the
VCA with optimization of an overall on-site energy shift
predicts a smooth dependence of the filling n on the chemical
potential �. While this represents a clear advantage as com-
pared to the direct cluster approach and to cluster-
perturbation theory, the main problem consists in the fact that
the cluster particle number remains constant. Consequently,
starting from a half-filled cluster, results are less and less
reliable for increasing hole concentration 1−n.

On the other hand, for reference systems with at least a
single bath site per correlated site �ns�2� there is a mecha-
nism which solves the problem: With the total cluster par-
ticle number always being equal to the total number of clus-
ter sites, Ntot=L�, the particle density at the correlated sites,
and, related to that, also the filling of the original system may
vary continuously in its entire range.

For clusters with Lc correlated sites and ns−1=1 addi-
tional bath site attached to each, this mechanism has turned
out to work over a wide range of fillings. Excellent agree-
ment with the exact n��� curve from the Bethe ansatz is
found for fillings lower than n
0.75. For fillings close to
half-filling in the critical regime, the VCA still gives a quali-
tatively satisfying result, comparable to C-DMFT calcula-

tions, but slightly overestimates the critical chemical poten-
tial. While accessing the critical regime for n→1 poses
difficulties, the compressibility divergence is clearly visible.

A smooth � dependence over the complete filling range as
well as a good description of the Mott insulator can be
achieved when using �for Lc=2 and ns=2� a somewhat dif-
ferent cluster topology where a bath site couples to both
correlated sites. We find that both the exact result as well as
the best �DMFT� mean-field result are almost quantitatively
recovered with small �Lc=2, Lc=1� reference systems in-
cluding the minimum number �ns=2� of local degrees of
freedom.

The one-dimensional Hubbard model considered in this
study has merely served for benchmarking purposes. Even-
tually, our main interest is focused on the physics of strongly
correlated electrons on two-or higher-dimensional lattices.
Doped Mott insulators in two dimensions, however, consti-
tute notoriously difficult many-body problems which require,
as a prerequisite, thorough studies of systems which are
more controlled in order to avoid artifacts or misinterpreta-
tions.
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